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Abstract

Large-scale datasets in computational chemistry typically require distributed-memory
parallel methods to perform a special operation known as tensor contraction. Tensors
are multidimensional arrays, and a tensor contraction is akin to matrix multiplication
with special types of permutations. Creating an efficient algorithm and optimized im-
plementation in this domain is complex, tedious, and error-prone. To address this, we
develop a notation to express data distributions so that we can apply use automated
methods to find optimized implementations for tensor contractions. We consider the
spin-adapted coupled cluster singles and doubles method from computational chemistry
and use our methodology to produce an efficient implementation. Experiments per-
formed on the IBM Blue Gene/Q and Cray XC30 demonstrate impact both improved
performance and reduced memory consumption.
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Nomenclature

CCSD coupled cluster single and doubles

CCSDT coupled cluster singles, doubles, and triples

CTF Cyclops Tensor Framework (software package)

DxTer Prototype system for design by transformation

NWChem NorthWest computational Chemistry (software package)

ROTE Redistribution Operations and Tensor Expressions
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1 Introduction

Quantum mechanical models have proven to be highly accurate for physical systems. These
systems are described by an associated function, called the system’s wave function. Different
theories of approximating the true wave function exist [24, 6, 25, 9]. One such theory, known
as coupled cluster theory [6], has been shown to accurately model chemical systems while
retaining desired properties of the model. In coupled cluster theory, a set of cluster operators
are defined that provide an exact representation of the wave function associated with the
system of interest. We focus a method that accounts for both single and double excita-
tions, referred to as the “coupled cluster singles and doubles (CCSD)” method [19]. Many
other methods exist, such as the “coupled cluster singles, doubles, and triples (CCSDT)”
method [17]. For each such method, an associated set of equations defines how to compute
the coefficients the correspond to the appropriate approximate wave function. Depending
on the particular method, the resulting set of equations can have different computational
characteristics. Further approximations can be made or techniques can be used to reduce the
complexity of the resulting equations or factorization process, and spin-adaptation refers to
a technique that produces sets of equations that can be efficiently computed [16]. We focus
on the spin-adapted CCSD in this work, but the methods we develop are more general.

The key operation in any of these methods is a series of tensor contractions and typically
require distributed-memory parallel solutions to perform the computation because the data
is so large. Tensors are multidimensional arrays and can be considered generalizations of
matrices. The order of a tensor is the number of ways or modes that it represents. We say a
tensor is higher-order if its order is greater than two. Tensor contractions are a generaliza-
tion of matrix-matrix multiplication. The challenge in developing efficient implementations
for applications based on tensor contractions stems from the increased number of data dis-
tributions and algorithmic variants available. The simplest approach to computing a tensor
contraction is to permute the data and perform a matrix-matrix multiplication, leveraging
previous work on parallelizing that operation. Unfortunately, this reduces the opportunities
for improving performance and reducing memory requirements.

The goal of this work is to optimize a series of tensor contractions using automated tools.
To do this, we have to consider not only how to optimize the individual contractions, but
also consider the conjunctions where the output of one contraction is the input the next. To
automate this process, we need a well-defined language that expresses the distributions and
redistributions of the tensor objects.

We can borrow from the ideas from matrix-matrix multiplication [22, 27, 28, 20] because
it is closely related to tensor contraction. We develop a notation to encode tensor operations
and distributions on a multidimensional processing mesh. It can be used to explain the data
redistributions that occur from efficient collective communications. This combination leads
to a systematic approach to derive algorithms for a series of tensor contraction operations,
making the algorithmic impact of the choices clear and simplifying the decision-making
in designing optimization algorithms. Additionally, decisions potentially error-prone hand-
coded optimization can be automated.
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2 Detailed Description of Experiment/Method

Here, we briefly describe the notation developed for data distributions and redistributions
as well as the systematic algorithm derivation procedure exposed by the notation. Details
of the notation as well as the derivation procedure can be found in [21].

2.1 Preliminaries

We use boldface capital letters to refer to tensors (A, B, C). The order of a data tensor
is denoted M . If necessary, a parenthesized superscript is used to differentiate between the
tensors being considered; e.g., M (A) indicates the order of the tensor A.

We use I = (I0, . . . , IM−1) to refer to the size of an order-M tensor. When referencing
an element of the order-M tensor A, we specify its location in A with an M -tuple, or
multiindex, i = (i0, . . . , iM−1) with entries corresponding to the element’s index in each
mode of the tensor. Again, sizes and multiindices of a specific tensor are distinguished by a
parenthesized superscript if necessary.

2.2 Notation for Data Distributions

In our notation, indices of each tensor mode are element-cyclic distributed on a subset of
modes of an order-N processing mesh G. The combination of assigned indices determines
the set of elements assigned to each process. In our notation, for each tensor mode, we
associate an ordered set of processing mesh modes called a mode distribution.

The processing mesh modes comprising each mode distribution indicate the modes along
which the corresponding tensor mode indices are elemental-cyclic distributed. A tensor
distribution then becomes nothing more than the collection of mode distributions associated
with each modes of the tensor to be distributed. As a shorthand, to represent the order-M
tensor A distributed with mode u distributed according to the mode distribution D(u), we
write A

[
D(0), . . . ,D(M)

]
.

For instance,

A [(0) , (1)]

represents an order-2 tensor A distributed such that the mode-0 indices of A are elemental-
cyclic distributed among mode 0 of the processing mesh, and the mode-1 indices of A are
elemental-cyclic distributed among mode 1 of the processing mesh.

The order of elements in each mode distribution indicates the order of precedence each
processing mesh mode is given when determining the set of mode indices assigned to a
given process. For instance, the mode distribution (0, 1) indicates that the corresponding
mode indices should be distributed elemental-cyclic along mode mode 0 and mode 1 of the
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(0, 0) (0, 1) (0, 2)

a0,0 a0,3 . . . a0,1 a0,4 . . . a0,2 a0,5 . . .
a2,0 a2,3 . . . a2,1 a2,4 . . . a2,2 a2,5 . . .

...
...

. . .
...

...
...

...
...

. . .

(1, 0) (1, 1) (1, 2)

a1,0 a1,3 . . . a1,1 a1,4 . . . a1,2 a1,5 . . .
a3,0 a3,3 . . . a3,1 a3,4 . . . a3,2 a3,5 . . .

...
...

. . .
...

...
. . .

...
...

. . .

(a) A [(0) , (1)]
(0, 0) (0, 1) (0, 2)

a0,0 a0,6 . . . a0,1 a0,7 . . . a0,2 a0,8 . . .
a1,0 a1,6 . . . a1,1 a1,7 . . . a1,2 a1,8 . . .

...
...

. . .
...

...
. . .

...
...

. . .

(1, 0) (1, 1) (1, 2)

a0,3 a0,9 . . . a1,4 a0,10 . . . a0,5 a0,11 . . .
a1,3 a1,9 . . . a1,4 a1,10 . . . a1,5 a1,11 . . .

...
...

. . .
...

...
. . .

...
...

. . .

(b) A [() , (1, 0)]

Figure 1: Graphical depiction of the matrix A distributed according to different tensor
distributions represented in the defined notation. The top-left entry of every container
corresponds to the process’s location within the mesh.
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processing mesh. Further, this mode distribution indicates that a process’s location in mode
0 of the mesh should take higher precedence than its location in mode 1 of the mesh when
determining the set of indices assigned to it.

When restricted to an order-2 processing mesh, the mode distribution (0, 1) represents
an elemental-cyclic distribution of indices among processes as if the processes were arranged
as an order-1 processing mesh and placed in column-major order. Contrast this to the mode
distribution (1, 0) that similarly distributes indices among both modes of the processing
mesh, except that the processes are arranged in a row -major order.

Two examples of data distributions using our notation are illustrated in Figure 1. Further
details on how distributions are defined are given in [21].

2.3 Data Redistributions

Specific data redistributions are associated with each collective communications in distributed-
memory parallel matrix computations. We can express the change using our notation and
define rules to say the costs and possible implementation variations for each redistribution.
If a required redistribution does not directly map to one of the defined rules, then it can be
implemented by composing redistribution rules together. In [21], a procedure is given for
systematically decomposing redistributions along these lines.

2.4 Algorithm Derivation

For distributed-memory parallel matrix-matrix multiplication, the stationary family of al-
gorithms have been shown to lead to high-performance implementations [23]. These algo-
rithms assume one operand is significantly larger than the others and avoid communicating
this operand; the other operands are allowed to be communicated because they are smaller.
Nevertheless, the developer is still required to make choices on how to distribute the data.
in this subsection, we show an example of how our notation exposes the fixed parameters
and options in a tensor contractions. Although we show just a single contraction, this gen-
eral procedure can be applied to a series of tensor contractions. Additional details of this
procedure can be found in [21]

Consider the tensor contraction

Cαβηι = AαγικBβγηκ + Cαβηι

where C, A and B are conformally sized. For this example, our goal is to derive a stationary-
C algorithm that computes the above expression without communicating C. We assume an
order-4 processing mesh G of size P = P0 × P1 × P2 × P3.

10



We want to derive an algorithm that matches the template

1. A [?, ?, ?, ?]← A [?, ?, ?, ?] (redistribute A)

2. B [?, ?, ?, ?]← B [?, ?, ?, ?] (redistribute B)

3. C [?, ?, ?, ?]← C [?, ?, ?, ?] (redistribute C)

4. Tαβηιγ′κ′ [?, ?, ?, ?, ?, ?] =
∑̂
γκ

Aαγικ [?, ?, ?, ?]Bβγηκ [?, ?, ?, ?] (local contraction)

5. Cαβηι [?, ?, ?, ?] +=
∑̃
γ′κ′

Tαβηιγ′κ′ [?, ?, ?, ?, ?, ?] (global reduction)

6. C [?, ?, ?, ?]← C [?, ?, ?, ?] . (redistribute C)

(1)

where our goal is to fill in the unknown entries denoted with “?”. Steps 1-3 and 6 correspond
to redistributions of data, and Steps 4-5 perform the necessary computations. The symbols∑̂

and
∑̃

denote local and global summations, respectively. We use knowledge about our

problem specification to fill in details of the template and potentially remove unnecessary
steps. For instance, using a stationary-C algorithm implies that nothing will occur in Steps
3 and 6. We use the template as given for a starting point as it can be used to derive all the
stationary variants.

The derivation procedure is not dependent on a choice of initial distribution, however, we
know that tensor distributions that involve all modes of the processing mesh do not implicitly
replicate data. Let us derive an algorithm that assumes each tensor is initially distributed
such that there is no replication of data among processes. A convenient form for this is to
assume that the incoming tensors A, B, and C are initially distributed as

A [(0) , (1) , (2) , (3)] ,B [(0) , (1) , (2) , (3)] , and C [(0) , (1) , (2) , (3)] ;

in other words, via an elemental-cyclic distribution. Combining this with the stationary-C
assumption, our template now becomes

1. A [?, ?, ?, ?]← A [(0) , (1) , (2) , (3)]

2. B [?, ?, ?, ?]← B [(0) , (1) , (2) , (3)]

4. Tαβηιγ′κ′ [?, ?, ?, ?, ?, ?] =
∑̂
γκ

Aαγικ [?, ?, ?, ?]Bβγηκ [?, ?, ?, ?]

5. Cαβηι [(0) , (1) , (2) , (3)] +=
∑̃
γ′κ′

Tαβηιγ′κ′ [?, ?, ?, ?, ?, ?] .

(2)

Since Step 5 in (2) requires a global communication, which represents overhead, we want
to eliminate this step. To do so, we distribute the paired modes of T and C similarly,
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ensuring no communication. Hence, the procedure is updated as

1. A [?, ?, ?, ?]← A [(0) , (1) , (2) , (3)]

2. B [?, ?, ?, ?]← B [(0) , (1) , (2) , (3)]

4. Tαβηιγ′κ′ [(0) , (1) , (2) , (3) , ?, ?] =
∑̂
γκ

Aαγικ [?, ?, ?, ?]Bβγηκ [?, ?, ?, ?]

5. Cαβηι [(0) , (1) , (2) , (3)] +=
∑̃
γ′κ′

Tαβηιγ′κ′ [(0) , (1) , (2) , (3) , ?, ?] .

(3)

Likewise, Step 4 in (3) corresponds to a local tensor contraction and therefore all paired
modes must be distributed similarly to ensure the local computation succeeds. This yields

1. A [(0) , ?, (3) , ?]← A [(0) , (1) , (2) , (3)]

2. B [(1) , ?, (2) , ?]← B [(0) , (1) , (2) , (3)]

4. Tαβηιγ′κ′ [(0) , (1) , (2) , (3) , ?, ?] =
∑̂
γκ

Aαγικ [(0) , ?, (3) , ?]Bβγηκ [(1) , ?, (2) , ?]

5. Cαβηι [(0) , (1) , (2) , (3)] +=
∑̃
γ′κ′

Tαβηιγ′κ′ [(0) , (1) , (2) , (3) , ?, ?] .

(4)

Considering the determined tensor mode distributions along with the fact that we have
assumed an order-4 processing mesh reveals that the only valid assignment for the remaining
tensor mode distributions is the empty set (indicating a duplication of the tensor-mode
indices assigned to processes). Propagating this information leads to the template

1. A [(0) , () , (3) , ()]← A [(0) , (1) , (2) , (3)]

2. B [(1) , () , (2) , ()]← B [(0) , (1) , (2) , (3)]

4. Tαβηιγ′κ′ [(0) , (1) , (2) , (3) , () , ()] =
∑̂
γκ

Aαγικ [(0) , () , (3) , ()]Bβγηκ [(1) , () , (2) , ()]

5. Cαβηι [(0) , (1) , (2) , (3)] +=
∑̃
γ′κ′

Tαβηιγ′κ′ [(0) , (1) , (2) , (3) , () , ()] .

(5)

At this point, we have defined all unknowns and have arrived at a valid algorithm.
However, notice that Step 5 in (5) is performing a global reduction over no processing mesh
modes and is here an assignment rather than a summation. Therefore, by replacing C with
T in Step 4, we can remove Step 5 from our derived algorithm. This leads us to our final
template given by

1. A [(0) , () , (3) , ()]← A [(0) , (1) , (2) , (3)]

2. B [(1) , () , (2) , ()]← B [(0) , (1) , (2) , (3)]

4. Cαβηι [(0) , (1) , (2) , (3)] =
∑̂
γκ

Aαγικ [(0) , () , (3) , ()]Bβγηκ [(1) , () , (2) , ()] .
(6)

12



As mentioned, there may be places where a choice must be made that can impact per-
formance. This is where expert knowledge is still required to determine the optimal path of
redistributions (minimal cost or storage). However, the derivation procedure has significantly
reduced the number of possibilities that need to be considered.

2.5 Blocking

In Step 4 of (6), the distributions of A and B indicate a replication of data among processes
as some modes of G are not used in the associated tensor distribution. As we increase the
number of processes involved, so does the amount of data replication, with associated memory
requirements for the duplicated data. One straight-forward approach to curb this effect is
to block the overall tensor contraction into a series of smaller, block tensor contractions to
which we can apply the same derivation process.

Depending on how we choose the size of each block, different characteristics of the exe-
cution will be observed. If a large block size is chosen, a large amount of data is required
to perform the computation. If a small block size is chosen, reducing the amount of storage
required, a higher communication cost is predicted due to the increased number of com-
munications being performed (one round for each block). It is this trade-off that we must
recognize and appropriately analyze to ensure an efficient implementation is created.

Since we are dealing with higher-order tensors, determining the correct modes to block
may seem daunting at first. Observe that the source of replicated data in (6) are the dis-
tributed tensors A [(0) , () , (3) , ()] and B [(1) , () , (2) , ()]. Comparing the distributions of
these tensors to the initial distributions, we see that the replication of data originates from
the redistribution of the tensor modes involved in the summation. If we increase the number
of processes in our processing mesh, then replication will occur due to the redistribution of
these tensor modes. By blocking along these modes, we can mitigate this effect.

Generalizing this observation, notice that the tensor modes we should block along in (6)
correspond to the modes that are unpaired with our stationary tensor C. In fact, for all
stationary variants, the observation that replication occurs due to the redistribution of tensor
modes not paired with the stationary operand and should be blocked holds. This reasoning
provides an expert with a simple way of determining along which tensor modes to introduce
blocking, thereby mitigating the increased storage effect as the size of the processing mesh
increases.
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3 Results

The ideas developed in this work were encoded into the prototype system for design by trans-
formation (DxTer) [15, 14] for generating efficient implementations using our Redistribution
Operations and Tensor Expressions (ROTE) software. We applied this to the spin-adapted
CCSD method from computational chemistry. Experiments were performed on both the
Blue Gene/Q and Cray XC30 computing architectures and performance was compared to
the Cyclops Tensor Framework (CTF) [28] and the NorthWest computational Chemistry
(NWChem) [29] software packages, both state-of-the-art libraries for these computations.

3.1 IBM Blue Gene/Q Experiments

Comparison with CTF. In Figure 2, we show experimental results comparing ROTE
and CTF on 32 and 512 nodes (512 and 8192 cores, respectively) on the IBM Blue Gene/Q
system. The results show that the ROTE-based implementations achieve performance that
is as good or better than CTF in terms of GFLOPS. Additionally, the ROTE-based scales
to larger problem size because it is more efficient in its memory usage.

For the 32-node case, a configuration of eight MPI ranks per node and eight OpenMP
threads per MPI rank achieved the best results for each library. For the 512-node case, a
configuration of one MPI rank and sixty-four OpenMP threads per rank achieved the best
performance for both libraries. CTF handles its processor configuration internally. For
ROTE, we used a processing mesh of size 4 × 4 × 4 × 4 for the 32-node experiment and of
size 2 × 4 × 8 × 8 for the 512-node experiment. Note that in the 32-node experiment, all
grid modes have the same dimension meaning that many redistributions relying on all-to-all
collectives can be implemented in terms of permutation collectives.

For experiments on 512 nodes, we hypothesize that the reason DxTer did not pick a
processing mesh of size 8 × 8 × 8 × 8 is due to the allgather redistributions. Specifically,
data duplication occurs on modes 0 and 1 of the processing mesh. In the case of the 8× 8×
8× 8 configuration, this means that sixty-four processes are involved in the redistributions,
whereas in the 2× 4× 8× 8 configuration, only eight are. This is an example of where the
tradeoff between performance of different transformations and collective communications
must be considered to achieve a higher performing implementation; in the 2× 4× 8× 8 case,
we limit the opportunities to implement an all-to-all collective as a permutation collective,
but reduce the cost of allgather collectives, whereas the 8× 8× 8× 8 case has the opposite
property.

3.2 Cray XC30 Experiments

Comparison with CTF. In Figure 3, we compare ROTE and CTF using 32 and 512 nodes
(768 and 12288 cores, respectively) on the Cray XC30 architecture. A node configuration of
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(a) 32 nodes

(b) 512 nodes

Figure 2: Performance results on IBM Blue Gene/Q architecture comparing to CTF with
different numbers of compute nodes. The top of each graph represents the theoretical peak for
the configuration. Dashed vertical lines indicate the percentage of total memory consumed
by inputs.
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(a) 32 nodes

(b) 512 nodes

Figure 3: Performance results on Cray XC30 architecture comparing to CTF with different
numbers of compute nodes. The top of each graph represents the theoretical peak of the
configuration. Dashed vertical lines indicate the percentage of total memory consumed by
inputs.
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eight MPI ranks per node and three OpenMP threads per MPI rank achieved the best results
for both ROTE and CTF in both the 32- and 512-node experiments. For ROTE, we use a
processing mesh of size 4× 4× 4× 4 for 32 nodes and of size 8× 8× 8× 8 for 512 nodes.
For 32 notes, ROTE generally outperforms CTF, but for 512 nodes, is sometimes a little
better. The differences are not as extreme as for the IBM architecture. We suspect that this
is due to the relatively faster communication network of the Cray XC30 architecture that
allows differences in communication performance to be hidden [30, 18].

Comparison with NWChem. In Figure 4, we compare runtimes for ROTE and NWChem
using 32 and 512 nodes (768 and 12288 cores, respectively) on the Cray XC30 architecture.
We compare runtimes rather than FLOPS because each implementation is performing slightly
different computations.

As with CTF, the node configuration is not a parameter to NWChem; therefore, we
merely compare the best performance of ROTE-based implementations to the best achieved
by NWChem. When performing these experiments, we discovered a bug in an NWChem
implementation that utilized asynchronous communications (theoretically optimizing the
encountered communications) for the Cray XC30 architecture rendering it unusable for com-
parison. Instead, we compared against an implementation of NWChem (6.3) that did not
use this feature (similar to the stable implementation of NWChem) as recommended to us
by experts associated with NWChem.

NWChem relies on an approach to computing the dominant term of CCSD that ex-
ploits symmetry and therefore significantly reduces the overall storage requirement. As this
approach is not currently available in ROTE, we cannot solve problems that are as large.
Therefore, we stop the comparison at the largest problem size ROTE was able to compute.
Additionally, the exact equations being computed differ significantly from each package;
however, chemically they represent methods with similar computational complexity.

Considering the assumptions about these experiments, we see that although ROTE can
only solve smaller problems, it does outperform NWChem.

3.3 Weak Scalability Experiments

We perform weak scalability experiments, meaning that we increase the problem size in
proportion to the number of processing elements. For this metric, a perfectly scalable im-
plementation would maintain is performance (e.g., in terms of FLOPS or faction of peak
performance). In Figure 5, we show weak scalability results for ROTE on the IBM and Cray
systems.

For each data point, we selected a problem that was large enough so that approximately
fifty percent of the available storage was reserved for inputs of the CCSD application. The
results show good scaling. For the Blue Gene/Q, the fraction of peak performance is nearly
constant. For the Cray XC30, the performance dips slightly as the number of nodes increases.
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(a) 32 nodes

(b) 512 nodes

Figure 4: Timing results on Cray XC30 architecture comparing to NWChem with different
numbers of compute nodes (lower is better). Dashed vertical lines indicate the percentage
of total memory consumed by inputs.
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(a) IBM BlueGene/Q

(b) Cray XC30

Figure 5: Weak scalability of the ROTE-based implementations on different architectures.
Weak scalability measurements were performed with problems whose inputs consume ap-
proximately fifty percent of available memory. The top of the graph corresponds to the
theoretical peak of each configuration tested.
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Overall, this provides some evidence of relatively good weak scalability.

We mention here we may use a different optimized implementation for each number of
processors. We expect that if the same implementation is chosen both 32 and 512 nodes,
then performance would degrade as the relationship between processing mesh configuration
and the selected collectives may be less advantageous.
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4 Anticipated Impact

We anticipate that this work is both advancing the state of the art for distributed-memory
parallel computational chemistry methods, as well as providing a way to reason about im-
plementing distributed-memory tensor operations. To that end, we discuss topics relating
to more general tensor operations.

4.1 Symmetry & Sparsity

Many applications in computational chemistry involve symmetric tensors [17, 12]. Exploiting
symmetry can greatly reduce the storage and computational requirements, so incorporating
symmetry into the notation and theory is a topic for future research. In addition to symmetry,
some methods rely on sparsity in the tensors to reduce the overall computational cost and
storage requirements [8, 10, 13]. So far we have focused on dense tensors because each
process can be assigned a predictable and structured set of elements that maintains balance
(in computation and storage) among processes. Nevertheless, we plan to investigate what
forms of sparsity can be incorporated in the developed notation, thereby supporting a broader
set of applications.

4.2 Additional Families of Algorithms

In this work, we focused on the stationary family of algorithms; however, so-called “3D”
families of algorithms [1, 23, 26] for matrix-matrix multiplication have benefits in certain
settings and generalizations have been incorporated into other related projects. We will
investigate how to incorporate that family, and other potential families, of algorithms in the
developed notation as part of future research.

4.3 Additional Data Distributions

We focused on formalizing elemental-cyclic distributions. Other projects rely on different
forms of Cartesian distributions [4, 7] and other applications as well. For instance, some
chemistry methods rely on distributions blocked distributions [5]. We plan to investigate
how different Cartesian distributions can be incorporated into our notation.

4.4 Additional Tensor Operations

The application focused on in this dissertation arises from computational chemistry and the
operation focused on was the tensor contraction. Tensor operations, such as factorizations,
have also been shown to arise in the area of data analysis [11, 2, 3]. As part of future research,
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we plan to investigate how to incorporate these operations into the defined notation and
formalism.

4.5 Aiding Automated Tools

Blocking computations into subproblems can significantly reduce the amount of workspace
required for computation. Encoding this knowledge so that automated tools can effectively
reason about such aspects can aid them in determining the best implementation. We plan
on investigating other useful knowledge to encode for automated systems as well as how to
encode them.
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5 Conclusion

In this work, we developed a notation that encodes information for distributing higher-order
tensors on multidimensional processing meshes based on elemental-cyclic data distributions.
In doing so, a systematic procedure for deriving algorithms is exposed that facilitates the
automatic generation of high-performance implementations for a series of tensor contractions.
This notation extends the stationary family of algorithms, shown to be effective for matrix-
matrix multiplication, to tensor contractions. Experiments performed on the IBM Blue
Gene/Q and Cray XC30 architectures show that implementations generated using the ideas
developed in this document can improve over other state-of-the-art methods both in terms
of performance and storage requirements.
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